分布情況,分析了陶瓷粉末成形件出現密度不均現象的原因。研究結果有助於(yu) 對等靜壓工藝進行優(you) 化設計。
1前言粉末等靜壓成形過程是一個(ge) 非常複雜的成形過程,涉及到許多過程參數,例如粉末材料的各種組元、含量,模具的種類、形狀,加工溫度、濕度、壓力等。 在進行解析時還要考慮以下多方麵因素的影響:1)粉末材料含有一定孔隙,是一個(ge) 非連續體(ti) 需要以各個(ge) 顆粒之間的變形以及各顆粒之間的協調關(guan) 係來研究其整體(ti) 變 形,還要考慮粉末材料對溫度、應變速率存在敏感性的特點;2)工件、模具的複雜形狀、幾何尺寸;3)摩擦邊界條件;4)有限變形等方麵的因素。因此,難於(yu) 用理論解析方法來對粉末等靜壓成形過程求解。目前在實際生產(chan) 應用當中,一般都采用反複試驗的方法來確定模具尺寸。這種方法不僅(jin) 不能保證等靜壓坯料的質量, 而且還存在著模具設計周期長、產(chan) 品尺寸精度差以及密度不均等問題,消耗了大量的人力、物力和時間。
因此采用計算機有限元法模擬粉末冶金零件等靜壓成形過程就成為(wei) 了一種快速有效的設計方法。
通過有限元模擬,可以給出成形過程中粉末坯料幾何形狀、應力應變場、密度分布等數據,並據此分析出現質量缺陷的原因,從(cong) 而能及時改進加工過程,快速有效地確定模具的zui終理想形狀,達到提高生產(chan) 效率,降低成本的目的。
本文主要對陶瓷粉末件的冷等靜壓(CIP)成形過程進行分析討論。
2解析模型的建立2.1有限元模擬技術問題本解析的研究對象為(wei) 如所示的陶瓷粉末成形件,外層是橡膠模具、中間是陶瓷粉末坯料、裏層是芯棒。由於(yu) 載荷和形狀的對稱性,將陶瓷粉末件的成形過程簡化為(wei) 一個(ge) 典型的軸對稱問題。
中部K域頂部區域芯棒粉體(ti) 橡膠模具陶瓷粉末成形件的幾何模型陶瓷粉末件的冷等靜壓(cip)成形過程,具有幾何非線性、材料非線性、邊界條件非線性等特 點,因而在此采用了增量非線性有限元對非線性代數方程組進行迭代求解以滿足每步結束時的平衡方程,迭代方法采用了全牛頓一拉夫森法。
在幾何非線性方麵,從(cong) 大位移以及大應變角度來對陶瓷粉末件冷等靜壓成形過程進行分析,並采用更新的拉格朗日方法來描述坐標係。
在邊界條件非線性方麵,由於(yu) 在加壓變形過程中粉體(ti) 與(yu) 橡膠模具的接觸和相互間的摩擦起著重要作用,其接觸約束通過直接約束法來施加。同時考慮到了加載方向 隨結構變化而變化的外力的影響。2.2材料模型粉末材料是由大量顆粒構成的,每一個(ge) 顆粒均可以視為(wei) *致密體(ti) 其變形行為(wei) 可以用傳(chuan) 統的塑性力學來描述。但是 由這些顆粒所組成的粉末材料坯體(ti) 含有一定的孔隙,是一個(ge) 非連續體(ti) 。這種非連續體(ti) 的變形是一個(ge) 非常複雜的過程,等靜壓力影響粉末材料的屈服。因此,粉末材料 的屈服準則需要考慮如下兩(liang) 個(ge) 問題:粉末材料在塑性變形時的體(ti) 積(密度)變化;粉末材料的屈服應力與(yu) 相對密度有關(guan) 係,相對密度越大,變形所需的應力也越大。
從(cong) 八十年代中期開始,對粉末材料的屈服準則進行了一係列的研究工作。尤其是近年來,隨著粉末成形數值模擬技術的發展,粉末材料屈服準則的研究引起了人們(men) 的重視。許多學者提出了如式(1)的粉末材料成形條件式1靜水壓力對粉體(ti) 成形的影響,並且均可以用如下的一個(ge) 通式來表示,即一YP為(wei) 材料常數,為(wei) 相對密度 的函數;m為(wei) 等靜壓力;粉末材料的屈服應力0S與(yu) 不可壓縮材料的屈服應力00之間的關(guan) 係可由下式給出,即在0S中包括粉末顆粒間的表麵摩擦狀態、粉體(ti) 的破 壞等因素的影響,因此0S隨相對密度的變化而不斷變化。而03不隨相對密度而變化本文研究對象為(wei) 陶瓷粉末材料的參數Y卩、n、0與(yu) 其種類有關(guan) ,目前這些參 數還不能從(cong) 理論上給出,隻能通過:其中:CH)為(wei) 材料常數,具體(ti) 取值為(wei) 陶瓷粉末成形件CIP成形後頂部相對密度分布的模擬結果。可以看出,芯棒頂部倒角處 的相對密度較小,zui小值隻有0.661其他區域的相對密度較大,一般達到0.885.由此可見,通過有限元模擬可以清楚地了解到相對密度的分布情況,從(cong) 而 發現產(chan) 生密度缺陷的原因。
陶瓷粉末成形件頂部相對密度分布3.2陶瓷粉末流動情況所示為(wei) 成形過程中陶瓷粉末顆粒流動情況。由於(yu) 陶瓷粉末坯料帶 傾(qing) 斜端麵,在壓製時壓製方向與(yu) 傾(qing) 斜端麵不垂直,從(cong) 而使粉體(ti) 顆粒產(chan) 生側(ce) 向移動,並引發剪應力作用,因此形成低密度區域。從(cong) 所示的頂部粉體(ti) 顆粒流動情況可以發 現,在頂部A區、B區部位粉體(ti) 顆粒的流動緩慢,且相鄰顆粒之間的流動不協調,其位移行程有明顯差異,相鄰顆粒之間的變形不一致、不協調,存在明顯的難變形 區域,變形受到阻礙作用,從(cong) 而產(chan) 生了低密度現象。其原因主要在於(yu) 模具形狀的影響,即變形區對粉體(ti) 的變形與(yu) 流動有阻礙作用。
3.3相對密度變化規律為(wei) 成形過程中陶瓷粉末件密度變化情況,其中,頂部節點和中部節點的位置分別位於(yu) 所示的頂部低密度區域和中部正常密度區域。
從(cong) 中可以看出,模具形狀對陶瓷粉末成形件的壓密效果有極大影響。
中部節點位於(yu) 粉末成形件中部,變形時受模具形狀影響較小,因而變形均勻,致密效果良好,相對密度從(cong) 0.45增至0.88.頂部節點位於(yu) 頂部芯棒倒角處低 密度區域,變形時受模具形狀影響較大,因而變形不均勻,致密效果較差,密度僅(jin) 從(cong) 0.45增加到0.66左右。並且,從(cong) 圖中可以看出,頂部低密度區域處的粉 體(ti) 在成形過程初期的致密行為(wei) 良好,比位於(yu) 中部的粉體(ti) 更易於(yu) 變形,但在成形過程中間密度反而開始降低,從(cong) 0.70下降到0.66左右。
在成形過 程初期粉體(ti) 處於(yu) 疏鬆狀態,各部分均容易發生變形。並且位於(yu) 產(chan) 品頂部的粉體(ti) 顆粒此時處於(yu) 較佳的三向壓應力狀態,比位於(yu) 中部的粉體(ti) 更易於(yu) 變形,因而致密效果更 佳。但在成形過程中期,由於(yu) 受芯棒形狀的影響,與(yu) 型芯相接觸部位的變形受阻,因而壓密效果變差,同時由於(yu) 在頂部低密度區域外圍的粉體(ti) 顆粒仍繼續運動變形, 並繼續壓密,因此就在兩(liang) 者之間產(chan) 生滑動,出現“搓揉”現象,從(cong) 而造成該部位密度持續下降,形成了一個(ge) 低密度區域。
從(cong) 以上分析可以清晰地看出, 陶瓷粉末件的幾何形狀尺寸、模具形狀對密度分布有很大影響,該陶瓷粉末成形件的長寬比大,尺寸變化大,壓製時易出現局部區域應力集中現象,變形不易進行, 從(cong) 而出現低密度區域。同時,由於(yu) 粉末件坯料帶傾(qing) 斜端麵,在壓製成形時壓製方向與(yu) 傾(qing) 斜端麵不垂直,使得粉體(ti) 顆粒產(chan) 生側(ce) 向移動,從(cong) 而造成低密度區域的形成。本 研究有助於(yu) 對模具形狀提出改進方案,以提高陶瓷粉末成形件的使用壽命。
4結論通過模擬發現芯棒頂部倒角處粉末材料的相對密度zui小為(wei) 0.661,其他區域的相對密度較大,達到0.885.說明陶瓷粉末件的幾何形狀尺寸、模具形狀對低密度區域的形成有極大影響。
由於(yu) 陶瓷粉末坯料帶傾(qing) 斜端麵,在壓製成形時壓製方向與(yu) 傾(qing) 斜端麵不垂直,易出現局部區域應力集中現象,變形不易進行,從(cong) 而使粉體(ti) 顆粒產(chan) 生側(ce) 向移動,並引發剪應力作用,因此形成低密度區域。